Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 156-166, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100972

RESUMO

HYPOTHESIS: Plant protein ingredients from similar sources can vary in functionality not only because of compositional differences, but also because of differences in their structure depending on their processing history. It is essential to understand these distinctions to develop novel food emulsion using plant proteins. It is hypothesized that differing interfacial properties can be attributed to their structures, aggregation, and colloidal states. EXPERIMENTS: The adsorption behavior of a commercial protein isolate, homogenized or non-homogenized, was compared to a mildly extracted isolate to evaluate the effect of aggregation state and structural differences. After characterization of the particle size and protein composition, the interfacial properties were compared. FINDINGS: Atomic force microscopy provided evidence of interfaces packed with protein oligomers regardless of the treatment. Differences in adsorption kinetics and interfacial shear rheology depending on oil polarity suggested different interfacial structures. A polydisperse mixture of protein oligomers resulted in increased rearrangements and protein-protein interactions at the interface. Homogenization of commercial proteins resulted in a lower interfacial tension and less elastic interfaces compared to those of native proteins due to the presence of larger aggregates. This study highlights how the interfacial properties can be related to the protein aggregation state resulting from differences in processing history.


Assuntos
Ervilhas , Agregados Proteicos , Emulsões/química , Tensão Superficial , Proteínas de Plantas , Adsorção , Água/química , Reologia
2.
Biophys J ; 122(14): 3008-3017, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37029488

RESUMO

The annexins are a family of Ca2+-dependent peripheral membrane proteins. Several annexins are implicated in plasma membrane repair and are overexpressed in cancer cells. Annexin A4 (ANXA4) and annexin A5 (ANXA5) form trimers that induce high curvature on a membrane surface, a phenomenon deemed to accelerate membrane repair. Despite being highly homologous to ANXA4, annexin A3 (ANXA3) does not form trimers on the membrane surface. Using molecular dynamics simulations, we have reverse engineered an ANXA3-mutant to trimerize on the surface of the membrane and induce high curvature reminiscent of ANXA4. In addition, atomic force microscopy images show that, like ANXA4, the engineered protein forms crystalline arrays on a supported lipid membrane. Despite the trimer-forming and curvature-inducing properties of the engineered ANXA3, it does not accumulate near a membrane lesion in laser-punctured cells and is unable to repair the lesion. Our investigation provides insights into the factors that drive annexin-mediated membrane repair and shows that the membrane-repairing property of trimer-forming annexins also necessitates high membrane binding affinity, other than trimer formation and induction of negative membrane curvature.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Anexinas/química , Anexinas/metabolismo , Anexina A5/química , Anexina A5/metabolismo , Cicatrização , Membrana Celular/metabolismo
3.
Sci Rep ; 12(1): 22568, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581673

RESUMO

Efficient plasma membrane repair (PMR) is required to repair damage sustained in the cellular life cycle. The annexin family of proteins, involved in PMR, are activated by Ca2+ influx from extracellular media at the site of injury. Mechanistic studies of the annexins have been overwhelmingly performed using a single annexin, despite the recruitment of multiple annexins to membrane damage sites in living cells. Hence, we investigate the effect of the presence of the crosslinking annexins, annexin A1, A2 and A6 (ANXA1, ANXA2 and ANXA6) on the membrane curvature induction of annexin A4 (ANXA4) in model membrane systems. Our data support a mechanistic model of PMR where ANXA4 induced membrane curvature and ANXA6 crosslinking promotes wound closure. The model now can be expanded to include ANXA1 and ANXA2 as specialist free edge membrane crosslinkers that act in concert with ANXA4 induced curvature and ANXA6 crosslinking.


Assuntos
Anexina A1 , Anexinas , Anexinas/metabolismo , Anexina A4/metabolismo , Anexina A1/metabolismo , Cicatrização , Modelos Biológicos , Membrana Celular/metabolismo
4.
Langmuir ; 38(30): 9247-9256, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849366

RESUMO

Lipid droplet biogenesis comprises the emergence of cytosolic lipid droplets with a typical diameter 0.1-5 µm via synthesis of fat in the endoplasmatic reticulum, the formation of membrane-embedded lenses, and the eventual budding of lenses into solution as droplets. Lipid droplets in cells are increasingly being viewed as highly dynamic organelles with multiple functions in cell physiology. However, the mechanism of droplet formation in cells remains poorly understood, partly because their formation involves the rapid transformation of transient lipid structures that are difficult to capture. Thus, the development of controlled experimental systems that model lipid biogenesis is highly relevant for an enhanced mechanistic understanding. Here we prepare and characterize triolein (TO) lenses in a multilamellar spin-coated phosphatidylcholine (POPC) film and determine the lens nucleation threshold to 0.25-0.5% TO. The TO lens shapes are characterized by atomic force microscopy (AFM) including their mean cap angle ⟨α⟩ = 27.3° and base radius ⟨a⟩ = 152.7 nm. A cross-correlation analysis of corresponding AFM and fluorescence images confirms that TO is localized to lenses. Hydration of the lipid/lens film induces the gel to fluid membrane phase transition and makes the lenses more mobile. The budding of free droplets into solution from membrane lenses is detected by observing a change in motion from confined wiggling to ballistic motion of droplets in solution. The results confirm that droplet budding can occur spontaneously without being facilitated by proteins. The developed model system provides a controlled platform for testing mechanisms of lipid droplet biogenesis in vitro and addressing questions related to lens formation and droplet budding by quantitative image analysis.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Citosol , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Lipídeos/análise , Proteínas/metabolismo
5.
Food Res Int ; 147: 110460, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399460

RESUMO

A novel concept of stabilizing multiple-phase food structure such as emulsion using solely the constitutional bacteria enables an all-natural food grade formulation and thus a clean label declaration. In this paper, we propose an efficient approach to hydrophobically modifying the surface of lactic acid bacteria Lactobacillus rhamnosus (LGG) using lauroyl ahloride (LC) in non-aqueous media. Compared to the unmodified bacteria, cell hydrophobicity was dramatically altered upon modification, according to the higher percentages of microbial adhesion to hexadecane (MATH) and water contact angles (WCA) of LC-modified bacteria. No evident changes were found in bacterial surface charge before and after LC modification. By using one-step homogenization, all the modified bacteria were able to generate stabile water-in-oil-in-water (W/O/W) double emulsions where bacteria were observed on oil-water interfaces of the primary and secondary droplets. Modification using high LC concentrations (10 and 20 w/w%) led to rapid autoaggregation of bacteria in aqueous solution. A long-term lethal effect of modification primarily came from lyophilization and no apparent impact was detected on the instantaneous culturability of modified bacteria.


Assuntos
Lactobacillales , Emulsões , Interações Hidrofóbicas e Hidrofílicas
6.
Sci Adv ; 7(27)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34215587

RESUMO

The plasma membrane shapes and protects the eukaryotic cell from its surroundings and is crucial for cell life. Although initial repair mechanisms to reseal injured membranes are well established, less is known about how cells restructure damaged membranes in the aftermath to restore homeostasis. Here, we show that cells respond to plasma membrane injury by activating proteins associated with macropinocytosis specifically at the damaged membrane. Subsequent to membrane resealing, cells form large macropinosomes originating from the repair site, which eventually become positive for autophagy-related LC3B protein. This process occurs independent of ULK1, ATG13, and WIPI2 but dependent on ATG7, p62, and Rubicon. Internalized macropinosomes shrink in the cytoplasm, likely by osmotic draining, and eventually fuse with lysosomes. We propose that a form of macropinocytosis coupled to noncanonical autophagy, which we term LC3-associated macropinocytosis (LAM) functions to remove damaged material from the plasma membrane and restore membrane integrity upon injury.

7.
J Biol Chem ; 297(2): 101012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324830

RESUMO

Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.


Assuntos
Anexinas/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Fenotiazinas/farmacologia , Anexinas/metabolismo , Antipsicóticos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo
8.
FEBS J ; 288(23): 6716-6735, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34138518

RESUMO

Peripheral myelin protein 2 (P2) is a fatty acid-binding protein expressed in vertebrate peripheral nervous system myelin, as well as in human astrocytes. Suggested functions of P2 include membrane stacking and lipid transport. Mutations in the PMP2 gene, encoding P2, are associated with Charcot-Marie-Tooth disease (CMT). Recent studies have revealed three novel PMP2 mutations in CMT patients. To shed light on the structure and function of these P2 variants, we used X-ray and neutron crystallography, small-angle X-ray scattering, circular dichroism spectroscopy, computer simulations and lipid binding assays. The crystal and solution structures of the I50del, M114T and V115A variants of P2 showed minor differences to the wild-type protein, whereas their thermal stability was reduced. Vesicle aggregation assays revealed no change in membrane stacking characteristics, while the variants showed altered fatty acid binding. Time-lapse imaging of lipid bilayers indicated formation of double-membrane structures induced by P2, which could be related to its function in stacking of two myelin membrane surfaces in vivo. In order to better understand the links between structure, dynamics and function, the crystal structure of perdeuterated P2 was refined from room temperature data using neutrons and X-rays, and the results were compared to simulations and cryocooled crystal structures. Our data indicate similar properties for all known human P2 CMT variants; while crystal structures are nearly identical, thermal stability and function of CMT variants are impaired. Our data provide new insights into the structure-function relationships and dynamics of P2 in health and disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Microscopia de Fluorescência/métodos , Mutação , Proteína P2 de Mielina/genética , Bainha de Mielina/metabolismo , Imagem com Lapso de Tempo/métodos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Proteína P2 de Mielina/química , Proteína P2 de Mielina/metabolismo , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Temperatura
9.
J Phys Chem B ; 125(22): 5838-5852, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34061522

RESUMO

Self-association of cholesterol into aggregates and crystals is a hallmark of developing atherosclerosis. Intrinsically fluorescent sterols, such as dehydroergosterol (DHE), can be used to study sterol aggregation by fluorescence spectroscopy and microscopy, but a thorough understanding of DHE's photophysical and structural properties in the aggregated state is missing. Here, we show that DHE forms submicron fluorescent aggregates when evaporated from an ethanol solution. Using atomic force microscopy, we find that DHE, like cholesterol, forms compact oblate-shape aggregates of <100 nm in diameter. DHE's fluorescence is lowered in the aggregate compared to the monomeric form, and characteristic spectral changes accompany the aggregation process. Electronic structure calculations of DHE dimers in water indicate that Frenkel-type exciton coupling contributes to the lowered DHE fluorescence in the aggregates. Using molecular dynamics (MD) simulations, we show that DHE forms compact aggregates on the nanosecond scale and with strong intermolecular attraction, in which a broad range of orientations, and therefore electronic couplings, will take place. Tight packing of DHE in aggregates also lowers the apparent absorption cross section, further reducing the molecular brightness of the aggregates. Our results pave the way for systematic solubility studies of intrinsically fluorescent analogues of biologically relevant sterols.


Assuntos
Ergosterol , Esteróis , Colesterol , Microscopia de Fluorescência , Espectrometria de Fluorescência
10.
J Colloid Interface Sci ; 600: 854-864, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052534

RESUMO

HYPOTHESIS: Annexin A4 and A5 (ANXA4, ANXA5), both shown to be required for efficient plasma membrane repair (PMR) in living cells, bind as trimers to anionic membranes in the presence of calcium. Both annexins induce membrane curvature and self-assemble into crystal arrays on membranes, observations that have been associated with PMR. However, in-vitro studies of annexins have traditionally been performed using single annexins, despite the recruitment of multiple annexins to the damage site in cells. Hence, we study the potential cooperativity of ANXA4 and ANXA5 during membrane binding. EXPERIMENTS: Laser injury experiments were performed on MCF7 cells transfected to transiently express labelled ANXA4 and ANXA5 to study the localization of the proteins at the damage site. Using free-edged DOPC/DOPS (9:1) membranes we investigated the annexin-induced membrane rolling by fluorescence microscopy and the lateral arrangement of annexin trimers on the membrane surface by atomic force microscopy (AFM). FINDING: ANXA4 and ANXA5 colocalise at the damage site of MCF7 cells during repair. A (1:1) mixture of ANXA4 and ANXA5 induces membrane rolling with a time constant intermediate between the value for the pure annexins. While binding of the pure annexins creates crystal lattices, the (1:1) mixture generates a random arrangement of trimers. Thus, curvature induction remains as a functional property of annexin mixtures in PMR rather than crystal formation.


Assuntos
Anexina A4 , Anexinas , Anexina A5 , Anexinas/genética , Cálcio/metabolismo , Membrana Celular/metabolismo
11.
Biochemistry ; 60(16): 1248-1259, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33861586

RESUMO

Rapid membrane repair is required to ensure cell survival after rupture of the plasma membrane. The annexin family of proteins is involved in plasma membrane repair (PMR) and is activated by the influx of Ca2+ from the extracellular medium at the site of injury. Annexins A1 and A2 (ANXA1 and ANXA2, respectively) are structurally similar and bind to negatively charged phosphatidylserine (PS) to induce membrane cross-linking and to promote fusion, which are both essential processes that occur during membrane repair. The degree of annexin accumulation and the annexin mobility at cross-linked membranes are important aspects of ANXA1 and ANXA2 function in repair. Here, we quantify ANXA1- and ANXA2-induced membrane cross-linking between giant unilamellar vesicles (GUVs). Time-lapse measurements show that ANXA1 and ANXA2 can induce membrane cross-linking on a time scale compatible with PMR. Cross-linked membrane-membrane interfaces between the GUVs persist in time without fusion, and quantification of confocal microscopy images demonstrates that ANXA1, ANXA2, and, to a lesser extent, PS lipids accumulate at the double membrane interface. Fluorescence recovery after photobleaching shows that the annexins are fully immobilized at the double membrane interface, whereas PS lipids display a 75% decrease in mobility. In addition, the complete immobilization of annexins between two membranes indicates a high degree of network formation between annexins, suggesting that membrane cross-linking is mainly driven by protein-protein interactions.


Assuntos
Anexina A1/química , Anexina A2/química , Membrana Celular/química , Proteínas Imobilizadas/química , Microscopia Confocal , Lipossomas Unilamelares/química
12.
Sci Rep ; 11(1): 4226, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608587

RESUMO

Plasma membrane repair is essential for eukaryotic cell life and is triggered by the influx of calcium through membrane wounds. Repair consists of sequential steps, with closure of the membrane hole being the key event that allows the cell to recover, thus identifying the kinetics of hole closure as important for clarifying repair mechanisms and as a quantitative handle on repair efficiency. We implement calcium imaging in MCF7 breast carcinoma cells subject to laser damage, coupled with a model describing the spatio-temporal calcium distribution. The model identifies the time point of hole closure as the time of maximum calcium signal. Analysis of cell data estimates the closure time as: [Formula: see text] s and [Formula: see text] s using GCaMP6s-CAAX and GCaMP6s probes respectively. The timescale was confirmed by independent time-lapse imaging of a hole during sealing. Moreover, the analysis estimates the characteristic time scale of calcium removal, the penetration depth of the calcium wave and the diffusion coefficient. Probing of hole closure times emerges as a strong universal tool for quantification of plasma membrane repair.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Imagem Molecular , Linhagem Celular Tumoral , Membrana Celular/efeitos da radiação , Permeabilidade da Membrana Celular , Análise de Dados , Humanos , Microscopia de Fluorescência , Imagem Molecular/métodos , Fatores de Tempo , Raios Ultravioleta
13.
Cells ; 9(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326222

RESUMO

The plasma membrane surrounds every single cell and essentially shapes cell life by separating the interior from the external environment. Thus, maintenance of cell membrane integrity is essential to prevent death caused by disruption of the plasma membrane. To counteract plasma membrane injuries, eukaryotic cells have developed efficient repair tools that depend on Ca2+- and phospholipid-binding annexin proteins. Upon membrane damage, annexin family members are activated by a Ca2+ influx, enabling them to quickly bind at the damaged membrane and facilitate wound healing. Our recent studies, based on interdisciplinary research synergy across molecular cell biology, experimental membrane physics, and computational simulations show that annexins have additional biophysical functions in the repair response besides enabling membrane fusion. Annexins possess different membrane-shaping properties, allowing for a tailored response that involves rapid bending, constriction, and fusion of membrane edges for resealing. Moreover, some annexins have high affinity for highly curved membranes that appear at free edges near rupture sites, a property that might accelerate their recruitment for rapid repair. Here, we discuss the mechanisms of annexin-mediated membrane shaping and curvature sensing in the light of our interdisciplinary approach to study plasma membrane repair.


Assuntos
Anexinas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Animais , Humanos , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Nanotubos/química
14.
Soft Matter ; 16(6): 1614-1626, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31957755

RESUMO

Membrane curvature effects are important in numerous cellular processes and many membrane interacting proteins induce spontaneous curvature upon membrane binding. Shiga and cholera toxins both belong to the AB5 family of toxins and consist of a toxic A subunit and a membrane-binding pentameric B subunit. Shiga and cholera toxins induce tubular membrane invaginations in cells and GUVs due to curvature effects and the toxins are known from MD simulations to induce curvature. Membrane invaginations have been linked to uptake of the toxins into cells. As a novel model system to experimentally characterize curvature-inducing proteins, we study the morphology induced in planar membrane patches. It was previously shown that annexins induce distinct morphologies in membrane patches including membrane rolling. In this study we show that the B subunits of Shiga and cholera toxins (STxB, CTxB) both induce roll-up of cell-sized membrane patches. Rolling starts from the free membrane edges of the patch and is completed within a few seconds. We characterize the branched roll morphology and find experimental estimates for the spontaneous curvature of the toxins based on the topography of rolls. The estimates are in agreement with previous MD simulations. We quantify the dynamics of rolling as induced by the toxins and demonstrate agreement with a theoretical model of the rolling dynamics. The model solves the equation of motion for a membrane roll and includes viscous drag and adhesion to the support. The results suggest that membrane rolling may be a general phenomenon displayed by many proteins that induce negative curvature in membranes with free edges.


Assuntos
Membrana Celular/efeitos dos fármacos , Toxina da Cólera/farmacologia , Simulação de Dinâmica Molecular , Toxina Shiga/farmacologia , Lipossomas Unilamelares/química , Toxina da Cólera/química , Toxina Shiga/química
15.
Curr Med Chem ; 27(22): 3600-3610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30663559

RESUMO

The plasma membrane of eukaryotic cells defines the boundary to the extracellular environment and, thus provides essential protection from the surroundings. Consequently, disruptions to the cell membrane triggered by excessive mechanical or biochemical stresses pose fatal threats to cells, which they need to cope with to survive. Eukaryotic cells cope with these threats by activating their plasma membrane repair system, which is shared by other cellular functions, and includes mechanisms to remove damaged membrane by internalization (endocytosis), shedding, reorganization of cytoskeleton and membrane fusion events to reseal the membrane. Members of the annexin protein family, which are characterized by their Ca2+-dependent binding to anionic phospholipids, are important regulators of plasma membrane repair. Recent studies based on cellular and biophysical membrane models show that they have more distinct functions in the repair response than previously assumed by regulating membrane curvature and excision of damaged membrane. In cells, plasma membrane injury and flux of Ca2+ ions into the cytoplasm trigger recruitment of annexins including annexin A4 and A6 to the membrane wound edges. Here, they induce curvature and constriction force, which help pull the wound edges together for eventual fusion. Cancer cells are dependent on efficient plasma membrane repair to counteract frequent stress-induced membrane injuries, which opens novel avenues to target cancer cells through their membrane repair system. Here, we discuss mechanisms of single cell wound healing implicating annexin proteins and membrane curvature.


Assuntos
Membrana Celular , Anexinas , Cálcio , Citoesqueleto , Fosfolipídeos , Cicatrização
16.
Sci Rep ; 9(1): 6726, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040365

RESUMO

The plasma membrane of eukaryotic cells forms the essential barrier to the extracellular environment, and thus plasma membrane disruptions pose a fatal threat to cells. Here, using invasive breast cancer cells we show that the Ca2+ - and phospholipid-binding protein annexin A7 is part of the plasma membrane repair response by enabling assembly of the endosomal sorting complex required for transport (ESCRT) III. Following injury to the plasma membrane and Ca2+ flux into the cytoplasm, annexin A7 forms a complex with apoptosis linked gene-2 (ALG-2) to facilitate proper recruitment and binding of ALG-2 and ALG-2-interacting protein X (ALIX) to the damaged membrane. ALG-2 and ALIX assemble the ESCRT III complex, which helps excise and shed the damaged portion of the plasma membrane during wound healing. Our results reveal a novel function of annexin A7 - enabling plasma membrane repair by regulating ESCRT III-mediated shedding of injured plasma membrane.


Assuntos
Anexina A7/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Anexina A7/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Digitonina/toxicidade , Feminino , Células HeLa , Humanos , Células MCF-7
17.
Sci Rep ; 8(1): 10309, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985397

RESUMO

Annexins are a family of proteins characterized by their ability to bind anionic membranes in response to Ca2+-activation. They are involved in a multitude of cellular functions including vesiculation and membrane repair. Here, we investigate the effect of nine annexins (ANXA1-ANXA7, ANXA11, ANXA13) on negatively charged double supported membrane patches with free edges. We find that annexin members can be classified according to the membrane morphology they induce and matching a dendrogam of the annexin family based on full amino acid sequences. ANXA1 and ANXA2 induce membrane folding and blebbing initiated from membrane structural defects inside patches while ANXA6 induces membrane folding originating both from defects and from the membrane edges. ANXA4 and ANXA5 induce cooperative roll-up of the membrane starting from free edges, producing large rolls. In contrast, ANXA3 and ANXA13 roll the membrane in a fragmented manner producing multiple thin rolls. In addition to rolling, ANXA7 and ANXA11 are characterized by their ability to form fluid lenses localized between the membrane leaflets. A shared feature necessary for generating these morphologies is the ability to induce membrane curvature on free edged anionic membranes. Consequently, induction of membrane curvature may be a significant property of the annexin protein family that is important for their function.


Assuntos
Anexinas/metabolismo , Bicamadas Lipídicas/química , Silicatos de Alumínio/química , Anexinas/química , Anexinas/genética , Humanos , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Microscopia de Fluorescência , Modelos Moleculares , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
18.
Nat Commun ; 8(1): 1623, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158488

RESUMO

Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane curvature near the edges. We propose that curvature force is utilized together with annexin A6-mediated constriction force to pull the wound edges together for eventual fusion. We show that annexin A4 can counteract various plasma membrane disruptions including holes of several micrometers indicating that induction of curvature force around wound edges is an early key event in cell membrane repair.


Assuntos
Anexina A4/metabolismo , Anexina A6/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Anexina A4/genética , Anexina A6/genética , Cálcio/metabolismo , Membrana Celular/genética , Células HeLa , Humanos , Membranas Artificiais , Fosfolipídeos/metabolismo , Cicatrização
19.
J Dairy Res ; 84(2): 229-238, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28524017

RESUMO

The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.


Assuntos
Manipulação de Alimentos/métodos , Temperatura Alta , Leite/química , Proteínas do Soro do Leite/química , Adsorção , Animais , Caseínas/química , Eletroforese em Gel de Poliacrilamida , Gorduras/análise , Gorduras/química , Proteínas do Leite/química , Agregados Proteicos , Desnaturação Proteica , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Iogurte
20.
Chem Phys Lipids ; 205: 1-10, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28365392

RESUMO

Higher sterols are universally present in large amounts (20-30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol in animals, ergosterol in fungi and yeast, phytosterols in higher plants, and e.g., fucosterol and desmosterol in algae. The question arises as to which specific properties do sterols impart to membranes and to which extent do these properties differ among the different sterols. Using a range of biophysical techniques, including calorimetry, fluorescence microscopy, vesicle-fluctuation analysis, and atomic force microscopy, we have found that fucosterol and desmosterol, found in red and brown macroalgae (seaweeds), similar to cholesterol support liquid-ordered membrane phases and induce coexistence between liquid-ordered and liquid-disordered domains in lipid bilayers. Fucosterol and desmosterol induce acyl-chain order in liquid membranes, but less effectively than cholesterol and ergosterol in the order: cholesterol>ergosterol>desmosterol>fucosterol, possibly reflecting the different molecular structure of the sterols at the hydrocarbon tail.


Assuntos
Desmosterol/química , Bicamadas Lipídicas/química , Alga Marinha/química , Estigmasterol/análogos & derivados , Varredura Diferencial de Calorimetria , Membrana Celular , Fenômenos Mecânicos , Microscopia de Força Atômica , Microscopia de Fluorescência , Estrutura Molecular , Estigmasterol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...